
Using Adaptive Priority Scheduling for Service Differentiation in
QoS-aware Web Servers

Mário Meireles Teixeira Marcos José Santana
Regina H. C. Santana

Department of Informatics Institute of Mathematics and
Federal University of Maranhão Computer Science
São Lúıs, MA, Brazil 65085-580 University of São Paulo

Phone: +55 98 217 8223 São Carlos, SP, Brazil 13560-970
mario@icmc.usp.br {mjs, rcs}@icmc.usp.br

Abstract
The current best-effort service model used on

the Internet treats all requests uniformly, both in
the network and at the application level. However,
sometimes it is desirable to provide different classes
or levels of service in order to satisfy the needs of
different users and applications. In this paper, we pro-
pose an architecture for the provision of differentiated
services at the web server level. The architecture is
verified by means of a simulation model and real web
server traces are used as workload. Two priority-based
algorithms are implemented in the architecture aiming
at service differentiation. The adaptive algorithm,
an innovative solution at the application domain,
allows the tuning of the priority level provided and
determines how strict the use of priorities will be.
The system can then adapt itself to various workloads,
an essential feature in a highly dynamic environment
such as the Web.

Keywords: web servers, service differentiation, pri-
ority scheduling, dynamic adaptation, simulation.

1 Introduction
The Internet has experienced an enormous growth

in the past few years and there are no signs of calmness
in the coming future. The change has not only been in
the amount of traffic but also in its nature. Initially,
most traffic was composed of plain text, generating a
light load, but nowadays we notice a widespread use of
images and multimedia content. Moreover, the Web
has now become a platform for conducting business
transactions, the so-called e-commerce.

The service currently provided on the Internet is
based on a best-effort model, which treats all traffic

uniformly, without any type of service differentiation
or prioritization, a characteristic we find even in the
design of critical Internet services, such as the Web.
However, not all types of traffic are equivalent or have
the same priority to their users [4]. Therefore, it is es-
sential to provide service differentiation with different
levels of quality of service (QoS) to different request
types [7]. This is also true at the application level,
especially in the web servers, which are ultimately re-
sponsible for the fulfillment of user requests.

In this work, we propose a novel architecture for
a web server capable of providing differentiated ser-
vices to its users and applications according to their
demand characteristics. We consider the existence of
diverse classes of users and analyze the implementa-
tion of two priority-based service differentiating mech-
anisms. The results demonstrate that the proposed
architecture is actually able to provide service differ-
entiation at the web server level. Our model may be
used as a starting point for either the implementation
of a server program or the deployment of distributed
web server infrastructures.

The strict priority mechanism is an efficient and
flexible solution for the provision of differentiated QoS,
as it works successfully with various workload profiles
and server configurations. However, it may eventually
cause the starvation of low priority requests. We also
propose an adaptive priority mechanism, an innova-
tive solution for service differentiation at the applica-
tion level. This algorithm allows the fine-tuning of the
prioritization level employed by the system and deter-
mines how strict the use of priorities will be. Con-
sequently, the server acquires a certain adaptability,
becoming able to promptly respond to the changing
nature of an environment such as the World Wide



Web.
The remainder of this paper is organized as follows:

Section 2 describes the model for the service differenti-
ating web server and Section 3 discusses its validation.
Sections 4 and 5 present the strict and adaptive prior-
ity algorithms in detail and analyze the results. Sec-
tion 6 discusses some related work. Finally, Section 7
concludes the paper with some final remarks.

2 Service Differentiating Web Server
Model

Current web servers process all requests according
to a FIFO (First-In First-Out) discipline, managing a
single queue where each request waits to be serviced,
in strict arrival order. Although different concurrency
control schemes may be implemented in the server to
speed up request processing, it generally happens uni-
formly, without any regard to the peculiarities or ur-
gency of each type of request.

In this section, we propose a generic model for a
Service Differentiating Web Server (SWDS, in Por-
tuguese) which should be able to provide different lev-
els of service to its clients with quality of service guar-
antees. Figure 1 describes the proposed architecture,
composed of the following modules: a Classifier, an
Admission Control module and a cluster of web server
processes.

The Classifier is the element responsible for receiv-
ing requests upon arrival at the server and for divid-
ing them into classes following some previously defined
criteria. The Admission Control module manages the
acceptance of new requests by the server taking into
account current service policies and system workload
information. In case of system overload, a request
may be either rejected (Dropping) or have its QoS re-
quirements downgraded (Negotiation), so that it can
be accepted in a lower priority class. After being ad-
mitted to the system, the request is assigned to one
of the nodes of the web server cluster and is serviced
according to the scheduling or service differentiating
algorithm currently in operation. After processing,
the results are sent back to the clients.

In this work, each cluster node is viewed as a plain
web server with a CPU, a disk, a network interface
and other resources. The nodes could have also been
abstracted as processes, tasks or even CPU’s in a par-
allel computer, since the model does not necessarily
imply that the cluster is composed by computers in a
distributed system.

3 Model Experimentation
In order to validate our model, we chose a discrete-

event simulation using the SimPack simulation pack-

age1. We used real web server traces for workload
generation, as seen in other related work. The log files
used have been collected from the 1998 World Cup web
site [2] and correspond to June 11, 1998, recording ac-
cesses to 27 busy web servers. During the simulation,
log records are read sequentially and offered as input
to the model. If two records have the same timestamp,
we assume the arrivals are uniformly distributed in a
one-second interval, at the most. The interval upper
value is varied in order to generate different arrival
rates for the HTTP requests.

A typical web server needs to perform several tasks
in order to serve an HTTP request: URL parsing, user
authentication, reading of the requested file from disk,
transmission of the file to the client and log record-
ing [6] [8]. In the experiments, we set the parame-
ters for the server disks with a data transfer rate of
37 MBytes/s and a seek time of 8.5 ms. We assumed
each web server in the cluster was connected to a port
on a Fast Ethernet switch with an actual capacity of
80 Mbps. Other processing parameters were obtained
from [3] [6].

Our simulation program implements the SWDS
server model presented in Fig. 1, with four identical
web servers comprising a cluster. All nodes store the
same documents. Arriving requests are divided into
two classes (high and low priority) by the Classifier
module and are subsequently assigned to the cluster
nodes in a round-robin fashion. The strict and adap-
tive algorithms determine the nodes’ queuing disci-
plines. We chose not to use the admission control
module in case of system overload in order not to inter-
fere with the performance evaluation of the proposed
mechanisms. Therefore, server queues are unlimited.

4 Strict Priority Mechanism
4.1 Concepts

Priority queuing systems treat customers differ-
ently, giving preferential treatment to a few privileged
classes of users. Strict Priority Scheduling requires
that customers are served in strict priority order,
meaning that low priority customers will be served
only if there are no high priority customers waiting.

In the experiments, customers (namely, HTTP re-
quests) are divided into service classes which are
mapped onto the different priority levels provided by
the server, numbered from 0 to n. High priority re-
quests are given preference over low priority ones. Re-
quests with the same priority are served, within their
class, by the FIFO discipline. We assume the server
is non-preemptive and a request assigned to a server

1http://www.cise.ufl.edu/~fishwick/simpack/simpack.

html



Figure 1: Service Differentiating Web Server (SWDS)

process must remain in that process until service com-
pletion. Our experiments aim at determining whether
strict priority scheduling is adequate for service differ-
entiation. We use the mean request response time and
the ratio of successfully completed requests as perfor-
mance metrics, for both service classes.

4.2 Experimental Results

Initially, we studied the case where 50% of the
clients belong to the high priority class. Figure 2
shows the behavior of mean response time with respect
to system utilization. Curve (b) shows the response
time pattern when no service differentiating mecha-
nisms are used, the case of a plain web server, such as
Apache. Curves (a) and (c) represent the behavior of
low and high priority requests, respectively.

We find that non-prioritized response time (b)
raises with the increase in system utilization, suffer-
ing a severe degradation when the system approaches
full utilization. On the other hand, when service dif-
ferentiation is used, high priority requests (c) exhibit
a stable response time even at high utilization levels,
without any signs of performance degradation. More-
over, the treatment given to low priority requests (a)
is very close to the one provided by an undifferenti-
ated server, which is also an attractive feature of the
strict priority mechanism.

Figure 2: Request response time using strict priority
scheduling

4.2.1 High Priority Ratio

We performed other experiments with varying ratios
of high priority clients in order to verify their influence
in request service time. Figure 3 shows the behavior
of the response time of high priority requests, with
respect to system utilization, when 20, 50, 70 and 90%
of the clients belong to this class. We observe that the
higher the ratio of high priority clients, the lower the
arrival rate at which the response time curve begins to
rise, indicating system overload. Consequently, there
is a reasonable limit for the number of clients to be
allowed in the high priority class, so as not to hinder



Figure 3: High priority response time for different ra-
tios of privileged requests

Figure 4: Percentage of completed requests with re-
spect to high priority ratio

service differentiation.
We also analyzed the percentage of completed re-

quests with respect to the total number of arriving
requests (completion/arrival ratio). Figure 4 shows
the percentage of completed requests, in each class,
for high priority ratio ranging from 10 to 90%. The
treatment received by low priority requests degrades
considerably with the increase in high priority ratio,
to the point where less than 2% of them come to a
successful completion. This is a typical case of ser-
vice denial, which may cause non-privileged clients to
stop submitting requests to the server. High priority
clients, on its turn, end up consuming most of the sys-
tem resources and eventually experience degradation
of their own response time.

Our experiments have shown that strict priority
scheduling is an efficient mechanism for the provision
of differentiated services at the web server level, be-

ing more scalable than the Resource Reservation algo-
rithm (RSV) discussed in [10]. However, it is impor-
tant to pay attention to the performance of all service
classes, as it is not usually desirable to heavily penalize
low priority requests. Otherwise, we may discourage
clients that are potential revenue generators for the
business represented by a certain web site. Moreover,
if most of the clients arriving at a site receive a high
priority tag, it becomes very difficult to realize any
sort of service differentiation among them.

5 Adaptive Priority Mechanism
The strict priority mechanism discussed in Sec-

tion 4 is rather efficient at providing service differ-
entiation among different classes of requests. Never-
theless, it has some disadvantages which can be min-
imized through the use of a more flexible scheme for
request prioritization.

5.1 Algorithm Description
The Adaptive Priority Mechanism proposed here

is an innovative solution for service differentiation at
the application level, allowing the system administra-
tor to fine-tune the use of priorities according to QoS
requirements. Thus, it is possible to associate differ-
ent degrees of importance with high priority requests
in order to prevent them from monopolizing system
resources.

In order to implement the algorithm, each server
process is defined with a single waiting queue where
requests are inserted in strict arrival order. The al-
gorithm uses a look-ahead parameter (k) that spec-
ifies the maximum number of positions that will be
searched from the head of the queue looking for re-
quests of a given priority (class). If no request of the
desired priority is found, the algorithm is repeated for
the next lower level and so on. In the worst case, the
first request of the queue will be chosen for processing.
The higher the value of k, the better the treatment
given to higher priority requests. For k = 1, requests
will be serviced in strict arrival order, i.e., without any
service differentiation. We had to modify the source
code of the simulator in order to implement this algo-
rithm, as SimPack originally provides only the strict
priority discipline on its queues.

The use of the look-ahead as a control parameter for
the algorithm allows the tuning of the system’s priori-
tization level. In other words, the look-ahead specifies
how strict the priority scheme will be. This algorithm
brings adaptability to the SWDS server, which can
thus be customized to better respond to variations in
system load or to changes in the allocation of clients
to service classes.



5.2 Experimental Results
We validated the adaptive algorithm as described

in Section 3, using the server model presented in Fig-
ure 1. In this case, due to algorithm characteristics,
each cluster node is defined with a single waiting queue
and not multiple ones, as shown in the model. All clus-
ter nodes use the same value for the look-ahead param-
eter. We assume 50% of the clients belong to the high
priority class. Our aim is to determine whether the
use of an adaptive mechanism for the prioritization of
HTTP requests is actually able to guarantee service
differentiation without over sacrificing low priority re-
quests.

The initial experiments intended to evaluate the in-
fluence of the look-ahead value in the ratio of suc-
cessfully completed requests. Firstly, we executed a
simulation with k = 1 in order to determine the high-
est value to be used for the look-ahead. Our results
have shown that, for the server configuration used, the
maximum size of the nodes’ waiting queues (which we
will call max queue) was 4,300 requests, an indication
of system overload. Maximum mean response time
for both service classes was 15.5 seconds, at an arrival
rate of 488 requests/sec.

We performed further experimentation in order to
analyze the behavior of the ratio of completed re-
quests with respect to the arrival rate, for both service
classes. Look-ahead values range from 500 to 4,500.
We can notice that higher values of k gradually in-
crease the ratio of high priority requests that reach
a successful completion (Figure 5(a)). On the other
hand, they markedly worsen the treatment given to
low priority requests (Figure 5(b)).

For k = 1, the service received by both classes of
requests is virtually the same. In this situation, for
arrival rates greater than 400 requests/sec, some of the
high priority requests do not even reach completion.

However, for k > max queue, the adaptive algo-
rithm behaves as the strict priority mechanism dis-
cussed above. In this case, low priority requests ex-
perience their worst performance, with less than 50%
of them finishing successfully. For 500 ≤ k ≤ 4000,
we observe the other levels of service differentiation
realized by the system, according to the initial aim of
the adaptive priority algorithm, namely the tuning of
the architecture’s prioritization level.

The tuning of the look-ahead is critical for the per-
formance of the SWDS server. An extremely high
value of k may cause service denial of low priority
requests, whereas a low value may hinder service dif-
ferentiation.

Finally, we analyzed the behavior of request mean

(a) High priority requests

(b) Low priority requests

Figure 5: Ratio of completed requests for different
values of the look-ahead (k)

response time for different values of the look-ahead,
as shown in Figure 6. For k = 1, the curves over-
lap, since the same treatment is given to both service
classes. However, for k = 3000, the service differen-
tiation becomes evident and the service provided to
high priority requests is noticeably better, as initially
intended.
5.3 Remarks on the Mechanism

Our experiments have demonstrated that the fine-
tuning of the look-ahead value is an efficient mecha-
nism for providing service differentiation. The adap-
tive algorithm avoids the service denial problems expe-
rienced with the strict priority mechanism and allows
the system administrator to have a more effective con-
trol over the quality of service offered to the clients.
The SWDS server can be manually adjusted according
to current system load and organization policies.

The look-ahead may also be updated automatically,
using information obtained from the Admission Con-



Figure 6: Request response time using adaptive prior-
ity scheduling

trol module. In this case, this parameter would be var-
ied so as to follow certain goals set by the system ad-
ministrator, such as the maximum expected response
time for high priority requests or the throughput to be
reached for a particular service class. In a real-world
scenario, those goals would actually be established in
Service Level Agreements (SLA’s) contracted by the
clients. One possible approach to tune the look-ahead
is to describe the situation as an Optimization prob-
lem, where the value of k becomes the goal to be met
(e.g., a certain response time), subjected to certain re-
strictions (e.g., the maximum ratio of non-completed
requests). It is our intention to pursue this line of
research in future work.

6 Related Work
Some previous work has been conducted with the

aim of providing differentiated services at the web
server level. Eggert & Heidemann [5] propose simple
server-side application-level mechanisms for the im-
plementation of a web server with two service classes.
Their experiments show that the use of simple mech-
anisms such as limiting the number of processes per
server and priority assignment can provide significant
results. The work of Almeida el al. [1] uses priority-
based scheduling for service differentiation and imple-
ments two scheduling policies. However, the solution
presented demands changes in the operating-system
kernel. Chen & Mohapatra [3] propose a model for
a service differentiating Internet server and validate
it by means of a trace-driven simulation, as is the
case of our work. The authors also use priority-based
scheduling and analyze the admission control of re-
quests in case of server overload. Vasiliou & Lut-

fiyya [11] propose a QoS module and integrate it with
the Apache web server. Apache’s FIFO discipline is
replaced by a few scheduling algorithms which can be
changed at runtime to better suit different goals, a
very compelling feature. Rao & Ramamurthy [9] de-
scribe a program module that implements two server-
side application-level mechanisms to provide different
levels of service. The DiffServer module intercepts re-
quests coming in from the clients, sorts them according
to certain settings and forwards them to the Apache
server to be processed. Their results show the aver-
age waiting time for high priority requests decreases
considerably as compared to a FIFO approach.

7 Conclusions
We proposed an architecture for a service differen-

tiating web server, the SWDS server, which can pro-
vide different levels of service to different classes of
users. Our model is an evolution from conventional
web server architectures, which service clients using
a FIFO discipline, without considering the demands
of any particular group of users or applications. Our
architecture was validated by means of a simulation
model and the workload was generated using traces
from the 1998 World Cup web site.

We proposed and implemented two priority-based
scheduling mechanisms, strict and adaptive, in the
SWDS server model. The strict mechanism, com-
monly found in operating systems and network de-
vices, proved to be an efficient approach for the pro-
vision of differentiated services at the web server level
as well. It worked satisfactorily with various work-
load levels and server configurations. Our experiments
showed, however, that this mechanism works better
when the system is not overloaded and that it is also
important to adequately distribute the clients among
the service classes in order to prevent high priority
requests from monopolizing system resources.

Our adaptive priority mechanism, an innovative so-
lution at the application level, employs a look-ahead
parameter in the cluster’s waiting queues in order to
fine-tune the prioritization level used by the system.
Therefore, it is possible to associate different degrees
of importance with high priority requests. For high
values of the look-ahead, this algorithm behaves sim-
ilarly to the strict case. On the other hand, when the
look-ahead is close to one, the requests are serviced
according to their arrival order, without any service
differentiation. The adaptive mechanism avoids the
problems observed in the strict priority scheme and
allows the system administrator to have a more effec-
tive control over the quality of service offered to the
clients. The adaptive algorithm brings adaptability to



the SWDS server, which can thus be customized to
better respond to variations in system load and in the
allocation of clients to the service classes. We found
this mechanism to be the best choice for a highly dy-
namic environment such as the Web.

As future work, we intend to automatically update
the look-ahead using information from the Admission
Control module. In addition, we aim at implementing
other priority-based mechanisms in the model, such as
Weighted Fair Queueing and Earliest Deadline First,
which are commonly found in the networking domain.
In this case, the challenge is to port those algorithms,
devised from a packet viewpoint, to the application
level, where we should consider the specific details
of web workload. Finally, the implementation of the
Admission Control module will allow the provision of
even more refined levels of QoS by the SWDS server.

Acknowledgments
We would like to thank Brazilian funding agencies

CAPES, CNPq, FAPESP and FAPEMA for their sup-
port to the research projects of the Distributed Sys-
tems and Concurrent Programming Lab (LaSDPC) at
ICMC-USP.

References
[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao,

“Providing differentiated levels of service in web
content hosting,” in Proceedings of the 1998 SIG-
METRICS Workshop on Internet Server Perfor-
mance, mar 1998.

[2] M. Arlitt and T. Jin, “Workload characterization
of the 1998 World Cup web site,” HP Laborato-
ries, Tech. Rep. HPL-1999-35, sep 1999.

[3] X. Chen and P. Mohapatra, “Providing differen-
tiated services from an Internet server,” in Pro-
ceedings of the IEEE International Conference
on Computer Communications and Networks, oct
1999, pp. 214–217.

[4] C. Dovrolis and P. Ramanathan, “A case for rel-
ative differentiated services and the proportional
differentiation model,” IEEE Network, sep 1999.

[5] L. Eggert and J. Heidemann, “Application-level
differentiated services for web servers,” World
Wide Web Journal, vol. 3, no. 2, pp. 133–42, sep
1999.

[6] Y. Hu, A. Nanda, and Q. Yang, “Measure-
ment, analysis and performance improvement of
the Apache web server,” in Proceedings of the
18th IEEE International Performance, Comput-
ing and Communications Conference, feb 1999.

[7] K. Kant and P. Mohapatra, “Scalable Internet
servers: Issues and challenges,” in Proceedings of
the Workshop on Performance and Architecture
of Web Servers (PAWS). ACM SIGMETRICS,
jun 2000.

[8] D. A. Menascé and V. A. F. Almeida, Capacity
Planning for Web Services: Metrics, Models and
Methods. Prentice Hall, 2003.

[9] G. Rao and B. Ramamurthy, “DiffServer: Ap-
plication level differentiated services for web
servers,” in Proceedings of the IEEE International
Conference on Communications, jun 2001.

[10] M. M. Teixeira, M. J. Santana, and R. H. C. San-
tana, “Analysis of task scheduling algorithms in
distributed web-server systems,” in Proceedings
of the International Symposium on Performance
Evaluation of Computer and Telecommunication
Systems (SPECTS), jul 2003.

[11] N. Vasiliou and H. Lutfiyya, “Providing a differ-
entiated quality of service in a World Wide Web
server,” ACM SIGMETRICS Performance Eval-
uation Review, vol. 28, no. 2, pp. 22–28, sep 2000.


