

UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA

Banco de Dados II

Processamento de Transações

Carlos Eduardo **Portela** Serra de Castro

Processamento de Transações

Sumário

Introdução

Definição

Problemas de consistência

Recuperação

Estados

System Log

Commit Point

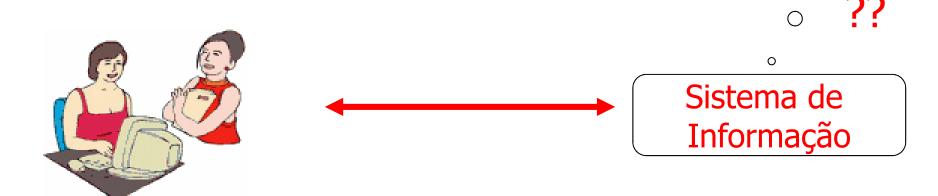
Propriedades

Introdução

• SGBD

- Número de usuários concorrentes
 - Monousuário x Multiusuário

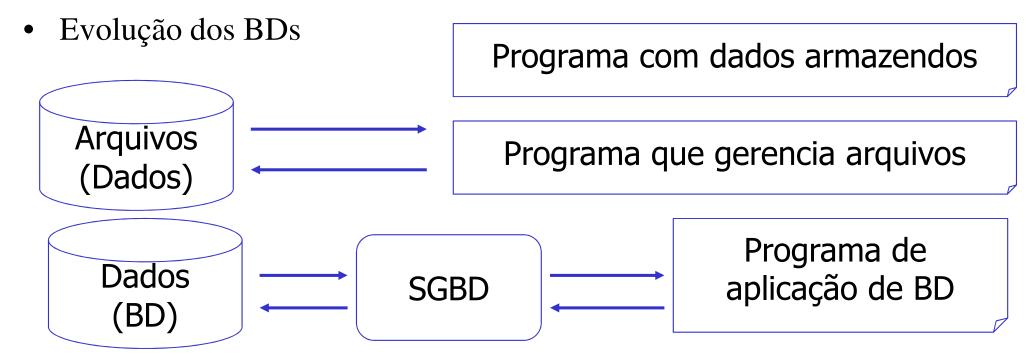
• Transação


Porque Banco de Dados?

- Idéia básica:
 Coletar, processar e disseminar dados.
- Necessidade de armazenar as informações (conjunto de dados) para tratá-las e utilizá-las de maneira otimizada.

Onde se encaixa o BD?

Desenvolver um Sistema de Informação consiste em traduzir um problema do mundo real em uma solução que envolve a organização, pessoas e tecnologia (hardware e software).



Para se implementar um SI, são necessários: Definição das Interfaces, Desenvolvimento das Aplicações, Projeto do Banco de Dados.

O que é Banco de Dados?

- Coleção de dados relacionados.
- Projetado, construído e povoado (com dados) para uma finalidade específica
 - Representa algum aspecto do mundo real, chamado mini-mundo ou universo de discurso

O que é Banco de Dados?

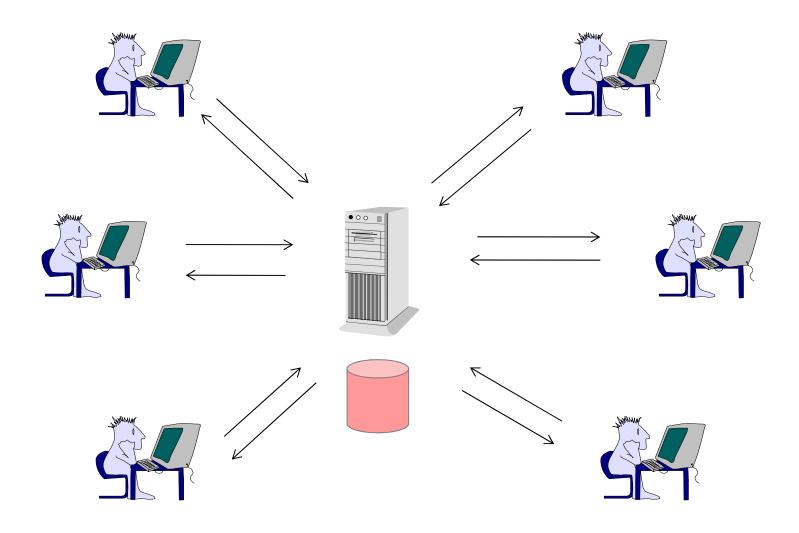
 "Uma coleção de dados operacionais inter-relacionados e persistentes. Estes dados são gerenciados de forma independente dos programas que os utilizam, servindo assim a múltiplas aplicações de uma Organização."

Vantagens do uso

- Dados armazenados em um único local evita-se redefinições; minimizase redundância;
- Dados compartilhados pelas aplicações facilita integração de aplicações; evita redefinição de dados;
- Dados mais independentes das aplicações novas operações de manipulação de dados não requerem modificação pesada no código da aplicação – aplicações não se preocupam mais com o gerenciamento dos dados;
- Maior flexibilidade de acesso linguagens para BD.

Sistema de Gerência de Banco de Dados (SGBD)

- Coleção de programas que facilitam o processo de Definir, Construir, Manipular um Banco de Dados.
- "Sistema cujo objetivo principal é gerenciar o acesso e a correta manutenção dos dados armazenados em um banco de dados."
- Funções básicas
 - Métodos de acesso
 - Integridade Semântica
 - Segurança
 - Concorrência
 - Independência Abstração dos dados


Sistema de Gerência de Banco de Dados (SGBD)

 Coleção de programas que facilita o processo de Definição, Construção e Manipulação de um Banco de Dados.

• Sistema de Banco de Dados:

Programa de Aplicação + SGBD + BD

Número de usuários concorrentes

Transações Concorrentes

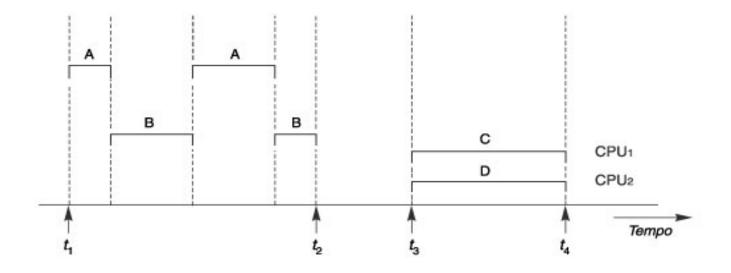


Figura 17.1 Processamento intercalado *versus* processamento paralelo de transações concorrentes.

Transações

Uma transação é uma unidade lógica do processamento do banco, que inclui uma ou mais operações de acesso ao banco de dados que precisa ser completada (ou desfeita) integralmente para garantir precisão.

- Essas operações podem incluir inclusão, exclusão, modificação ou seleção.
- Iniciar: start transaction (begin).
- Finalizar: commit (work).

Granularidade de Itens de Dados

- Todas as técnicas de controle de concorrência consideram que o banco de dados é formado a partir de uma série de itens de dados com nomes. Um item de dados pode ser escolhido como sendo entre os seguintes:
 - Um valor de um campo de um registro do banco de dados.
 - Um registro do banco de dados.
 - Um bloco de disco.
 - Um arquivo inteiro.
 - Todo o banco de dados.

Transações

```
(a) T, (b) T_2

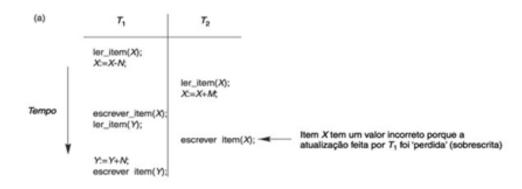
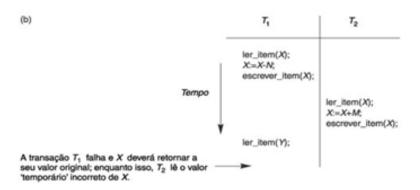
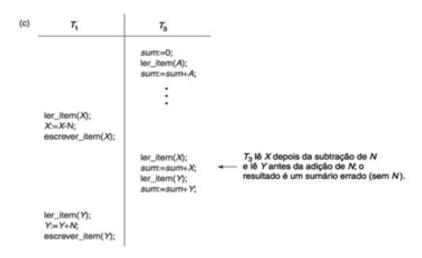

ler_item (X); escrever_item (X); X:=X+M; escrever_item (X); X:=X+M; escrever_item (X); ler_item (Y); Y:=Y+N; escrever_item (Y);
```

Figura 17.2 Duas transações simples. (a) Transação T_1 . (b) Transação T_2 .

Problemas de Consistência


- <u>Atualização Perdida</u>: duas transações que ocorrem simultaneamente atualizam o mesmo dado. Isto pode ocorrer em uma seqüência segundo a qual uma das atualizações é perdida.
- Atualização Temporária (Dirty Read): leitura de dados não confirmados de uma linha existente, podendo ocasionar a leitura de uma informação nunca confirmada.
- <u>Leitura Fantasma</u>: na releitura de um conjunto de dados, surgem novas informações no conjunto.
- <u>Leitura Não-Repetida</u>: duas leituras de dados na mesma transação não se repetem. Na segunda leitura, dados não existem ou foram modificados.


(a) O problema da atualização perdida.

(b) O problema da atualização temporária.

(c) O problema do sumário incorreto.

Estados da Transação

Ativa

Em processo de efetivação

Efetivada

Em processo de aborto

Concluída

Diagrama de Transição de Estado de uma Transação

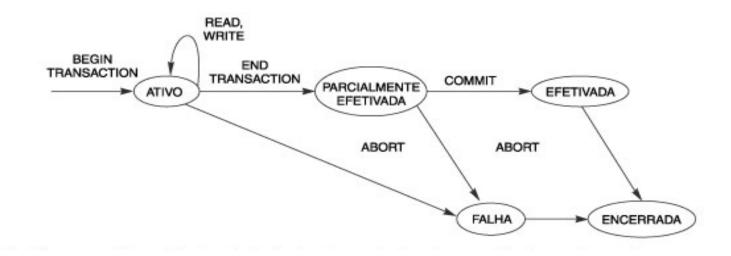


Figura 17.4 Diagrama de transição de estado ilustrando os estados de execução de uma transação.

System Log

- Registro de Ocorrências
- Diário do SGBD
- Log

Log

- Para auxiliar na recuperação de falhas.
- Log: guarda as informações de todas as operações que afetam o BD.
- Tipos de entradas no log:
 - [start_transaction, T]
 - [write_item,T,X,valor antigo, valor novo]
 - [read_item,T,X]
 - [commit,T]
 - [abort,T]
 Obs.: o log pode ser reduzido apenas a operações de gravação

Log

- Antes da transação alcançar seu ponto de *commit*, qualquer porção do log que não tenha sido escrito no disco deve ser escrito processo de forçar a escrita.
- *Checkpoints*: outro tipo de entrada no Log
 - todas as transações que tenham as entradas [commit,T] no log antes da entrada checkpoint não precisarão ser refeitas.

Log

 SGBD deve decidir qual o intervalo entre um *checkpoint* e outro (medido em tempo ou número de transações "committed").

- Ações do checkpoint:
 - Suspender a execução das transações temporariamente;
 - Forçar a escrita de todas as operações de atualização das transações *committed*;
 - Escrever o registro *checkpoint* no log e forçar a escrita no log;
 - Retomar a execução das transações.

Commit Point

- Transação efetivada.
- Gravação Forçada (force-writting).

Propriedades ACID

- Atomicidade: uma transação é uma unidade de processamento, é realizada integralmente ou não é realizada.
- Consistência: uma transação leva um banco de dados de um estado consistente para outro estado consistente.
- **Isolamento:** uma transação deve parecer como se estivesse sendo executada isoladamente.
- **Durabilidade:** as alterações aplicadas a um banco de dados por meio de uma transação confirmada (commited) devem persistir no banco de dados.

<u>A</u>tomicidade

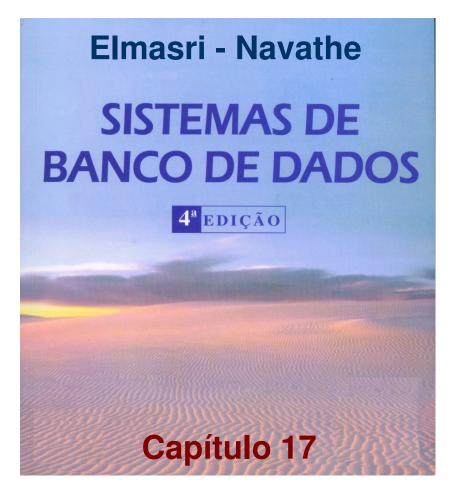
- Princípio do "Tudo ou Nada"
 - ou todas as operações da transação são efetivadas com sucesso no BD ou nenhuma delas se efetiva.
 - preservar a integridade do BD.
- Responsabilidade do subsistema de recuperação contra falhas (subsistema de *recovery*) do SGBD.
 - desfazer as ações de transações parcialmente executadas.

<u>C</u>onsistência

- Uma transação sempre conduz o BD de um estado consistente para outro estado também consistente.
- Responsabilidade conjunta do
 - DBA
 - definir todas as RIs para garantir estados e transições de estado válidos para os dados.
 - exemplo: saldo > 0
 - subsistema de *recovery*
 - desfazer as ações da transação que violou a integridade.

Isolamento

- No contexto de um conjunto de transações concorrentes, a execução de uma transação T_x deve funcionar como se T_x executasse de forma isolada.
 - $-T_x$ não deve sofrer interferências de outras transações executando concorrentemente.
- Responsabilidade do subsistema de controle de concorrência (*scheduler*) do SGBD.
 - garantir escalonamentos sem interferências.


<u>D</u>urabilidade

- Deve-se garantir que as modificações realizadas por uma transação que concluiu com sucesso persistam no BD.
 - nenhuma falha posterior ocorrida no BD deve perder essas modificações.
- Responsabilidade do subsistema de recovery.
 - refazer transações que executaram com sucesso em caso de falha no BD.

Níveis de Isolamento

- Nível 0: não sobrescreve leitura de sujeira de transações de nível mais alto;
- Nível 1: não permite atualizações perdidas;
- Nível 2: não há atualizações perdidas nem leitura de sujeira;
- Nível 3: nível 2 + leituras repetíveis. (também conhecido como isolamento verdadeiro).

Introdução aos Conceitos e à Teoria do Processamento de Transações